If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2-10r-48=0
a = 3; b = -10; c = -48;
Δ = b2-4ac
Δ = -102-4·3·(-48)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-26}{2*3}=\frac{-16}{6} =-2+2/3 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+26}{2*3}=\frac{36}{6} =6 $
| 6x-4x+3=20 | | 3x+2(4x+5)=120 | | 3x+7-10=4-1 | | 3x+x+x=270 | | 3x+x+x=360 | | 2d-12=7d+8 | | q/6+6=19 | | 6x-7=7x+3= | | 174=2(87+-1.5y)+3y | | 4n2-8n-5=0 | | 13n-5n+-3=-11 | | 4+4p=32 | | 5x+38=7x-12 | | d/14+9=16 | | 1x=3+5 | | 12y−3=5y+60 | | Y=7.4x+8.4 | | -4j-5j=18 | | q/16+19=20 | | -6+6y=1 | | v/16+2=2 | | 4x2+5x*8=0 | | 7m-4m+m=8 | | 2x+3x=-10-5 | | 8=6(3u+4)+2 | | v16+2=2 | | 24j=10 | | -2x^2-14x=12 | | Y=$2.09x+$3.05 | | 17(y+1)=17 | | 13=15-4z | | 2x+x+x+x=180 |